ГЛАВНАЯ  ОБ АВТОРЕ  НОВОСТИ ДЛЯ СТУДЕНТОВ  КОНТАКТЫ  КАРТА САЙТА  КОНСУЛЬТАЦИИ ПО ПОСТУПЛЕНИЮ В ВУЗ  

Электромобили
Классификация автомобильного бортового оборудования по поколениям
Системы автомобильного электрооборудования
Электроника на автомобиле
Автотронное оборудование автомобиля
Транзисторные системы зажигания
Принципиальная электрическая схема бесконтактно-транзисторной системы зажигания
Система впрыска бензина KE-Jetronic
Электронные и микропроцессорные системы зажигания
Электрогидравлический датчик давления (ЭГЗД)
Электронный блок управления впрыском (ЭБУ-В)
Выходные каскады с многовыводными катушками зажигания
Выходные каскады с индивидуальным статическим распределением
Общие сведения о механических системах впрыска бензина
Принципы построения автомобильных генераторов
Тенденции развития автомобильного оборудования
Классификация автомобильного бортового оборудования по поколениям
Система Стоп-старт
Выходной каскад с управляемым трансформатором зажигания
Автомобильные свечи зажигания
Устройство автомобильной свечи зажигания
Cистема впрыска топлива mono-motronic
Бензонапорный узел и утилизация паров бензина из бензобака
Системы электроискрового зажигания
Пусковая форсунка и ее управление, термореле времени
Регуляторы напряжения автомобильных генераторов
Датчики Холла
Комплексная система управления двигателем
Введение
МИКАС - комплексная система управления автомобильным двигателем
Электронные системы автомобиля и их диагностика

 

 

 

Автомобильные свечи зажигания

изучают автомобильный генератор

Электроискровая свеча является важнейшим компонентом любой современной автомобильной системы зажигания. От совершенства ее конструкции и правильного подбора в значительной степени зависит надежность работы двигателя внутреннего сгорания (ДВС) с принудительным воспламенением топливовоздушной рабочей смеси. По принципу работы различают свечи с искровым воздушным зазором, со скользящей искрой, полупроводниковые, эрозийные и комбинированные. При любом исполнении свеча зажигания является быстродействующим искровым запалом топливовоздушной смеси в цилиндрах ДВС. Наибольшее распространение на автомобильных двигателях получили искровые свечи с воздушным зазором, что объясняется их высокой надежностью, простотой конструкции и технологичностью изготовления.свечи зажигания

Особенности электроискрового разряда
Для образования искры в свече зажигания с воздушным зазором на ее электроды подается высокое напряжение, источником которого на современных легковых автомобилях является индуктивный накопитель энергии — катушка зажигания. Как только разность потенциалов на электродах свечи достигает значения пробивного напряжения, между электродами происходит электроискровой разряд.
Пробивное напряжение зависит от параметров самой свечи (материал и форма электродов, величина воздушного зазора между электродами, полярность центрального электрода), от параметров, характеризующих условия воспламенения рабочей смеси в камере сгорания (давление в момент пробоя искрового промежутка, температура рабочей смеси и электродов, состав и скорость движения смеси в зоне искрового промежутка); пробивное напряжение зависит также от скорости нарастания напряжения на электродах свечи, т.е. от параметров выходного каскада системы зажигания. Величина пробивного напряжения воздушного промежутка в свече зажигания лежит в пределах 8 кВ < Unp< 12 кВ. Максимальное значение пробивного напряжения характерно для режимов пуска и разгона двигателя, минимальное — для работы на установившихся режимах. Для надежной и бесперебойной работы системы зажигания максимальное напряжение U2max, развиваемое катушкой зажигания, должно превышать необходимое пробивное напряжение Unp на всех режимах работы двигателя с достаточным запасом: U2max = 1.5 Unp. Энергия, запасенная в индуктивном накопителе (в катушке зажигания), выделяется между электродами свечи в виде электрической искры. Электроискровой разряд является источником тепла, а также сильной ионизации и протекает практически мгновенно. Температура канала разряда (ионизированного искрового жгута) радиусом 0,2...0,6 мм превышает 10000°К. Электроискровой разряд энергии, накопленной в катушке зажигания, всегда распадается на две фазы: емкостную и индуктивную (рис. 10.1).
После того как ток в первичной (накопительной) обмотке катушки зажигания прерывается, начинает быстро исчезать магнитное поле, накопленное вокруг первичной обмотки за время протекания по ней первичного тока. При этом напряжение U2 на вторичной обмотке, а значит, и на электродах свечи зажигания, возрастает. Когда напряжение U2 становится равным пробивному (Unp), между электродами свечи происходит электроискровой разряд. В начале разряда будет иметь место емкостная фаза (участок а...б), а затем индуктивная (участок б...в).свеча
Емкостная фаза представляет собой разряд энергии, накопленной к моменту пробоя в электрических полях системы зажигания. Эти поля образуются в сосредоточенной емкости первичной и распределенной емкости вторичной цепи выходного каскада системы зажигания. Поскольку искровой промежуток сильно ионизирован и его сопротивление мало, ток емкостной фазы может достигать нескольких десятков и даже сотен ампер, однако длительность этой фазы незначительна —1...3 мкс.
Индуктивная фаза разряда следует сразу вслед за емкостной и представляет собой тлеющий разряд в догорающих газах той части энергии магнитного поля катушки зажигания, которая осталась в ней после завершения емкостной фазы разряда. Продолжительность индуктивной фазы значительно больше емкостной и достигает нескольких миллисекунд, но ток тлеющего разряда не превышает десятков миллиампер. Для систем зажигания с индуктивным накопителем энергия емкостной фазы находится в пределах 5...15 мДж, а индуктивной фазы — 50...100 мДж.
В нормально работающем двигателе рабочая смесь в камере сгорания воспламеняется во время емкостной фазы разряда, когда температура в искровом промежутке свечи зажигания достигает максимальных значений (10000°К и более). Однако индуктивная фаза играет более значительную роль при догорании топливовоздушной смеси и особенно на низких оборотах и на переходных режимах работы двигателя. В таких условиях индуктивная фаза разряда (длительность, энергия) оказывает более существенное влияние, чем емкостная фаза, на выходные характеристики двигателя (мощность, экономичность, токсичность). Однако емкостная фаза, являясь первичным "поджигателем" топливовоздушной смеси, определяет устойчивость и эффективность работы ДВС, а также является основным средством стабильности и высокоточного управления моментом зажигания в цилиндрах ДВС.
Следует отметить, что емкостная фаза сопровождается высокочастотными колебаниями, которые являются источником радиопомех.


Устройство автомобильной свечи зажиганияиндуктивный накопитель энергии


Тенденции развития автомобильного оборудования Классификация автомобильного бортового оборудования по поколениям Система Стоп-старт Расчет численности производственных рабочих и необходимого числа производственных постов Выходной каскад с управляемым трансформатором зажигания Устройство автомобильной свечи зажигания Оборудование для кузовного ремонта Продолжение для кузовного ремонта Электромобили Электроника на автомобиле 

 
   

Рассылки Subscribe.Ru
Современное образование
Подписаться письмом